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Abstract. We present a set of tiles consisting of a tetrahedron and an octahedron in two sizes
which admits a tile inflation yielding a non-periodic tiling of space.

In the mid-seventies Penrose (1978) discovered an aperiodic tiling of the plane by two
shapes, the kite and the dart. It was remarked in Robinson (1975) that an equivalent tiling
can be generated by two tiles which admit atile inflation, i.e. each tile can be tiled by
smaller tiles similar to the larger tiles. The two tiles considered by Robinson are thegolden
triangles with sidelengths 1, τ and τ , andτ, 1 and 1, whereτ = 1

2(1 + √
5); see figure 1

for the tile inflation, where the magnification factor isτ . Three-dimensional analogues of
these tilings have been given by Kramer (1982) (seven tiles), Mosseri and Sadoc (1982)
(four tiles) and Danzer (1989) (four tiles). The purpose of this paper is to give a set of four
tiles which tile space by tile inflation in a way which is closer to the2D Penrose tiling than
the examples above.

The set consists of four tiles, but we only have to describe two of them as the other
two are just inflated copies of the first two (by a linear factorτ ). Both tiles can already be
found in Kramer’s paper. The first is a tetrahedron denoteda, called the aetos (eagle), the
second, denotedv, an octahedron called the laros (seagull); see figure 2 for unfoldings of
these two cells. Apart from the feature that there are only two different shapes in the set,
the two cells have the following attractive properties:

• the cells have the same symmetry group (there is a twofold rotation axis, and two
perpendicular mirrorplanes),

• all faces of the cells are golden triangles (and all edge lengths are powers ofτ ).

We shall denote the set of tiles byA1 := {a, A, v, V }, whereA = τa andV = τv. The
tile inflation rule for this set of polyhedra can be conveniently described by a substitution
θ1 : A1 → A∗

1. The substitution is given by

θ1(a) = A θ1(v) = V θ1(A) = a2vA2 θ1(V ) = ava2vA2V A2V AV .

As yet, this is a formal way to indicate how the inflated tilesτa, . . . τV can be packed
by copies of the tilesa, . . . , V (cf figure 3). However, as in Dekking (1982), this can be
extended to a substitution over a larger alphabet which captures the complete geometry of the
tiling. Due to symmetry breaking the larger alphabet should contain symbols corresponding
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Figure 1. Left: the two golden triangles. Right: tile inflation of the golden triangles.

Figure 2. Unfoldings of the larosv (left) and the aetosa (right).

Figure 3. Tile inflation of τA and τV . Shown is how the
faces ofa1, a2, v1, A1 andA2 cover the faces ofτA1 and how
the faces ofa1, a2, v1, v2, A1, A2, A3, A4, V1, V2 andV3 cover
the faces ofτV . The tilesa3 andA5 are in the interior ofτV .

to left-handed and right-handed versions of the tiles, and further tiles should be distinguished
according to their icosahedral orientations (see Dekking (1995) for this construction for the
Penrose tiling by golden triangles). Because of the two mirror versions of the tiles and
the multitude of ways the cells can be packed in their inflated copies, there will be many
{a, v, A, V }-tilings possible. As usual, the tiling of space is obtained by considering the
patch of tiles described byθn

1 (A) n = 1, 2, . . . which, when conveniently centred, covers
larger and larger parts of space.
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Figure 4. The A, H, S andZ tiles.

The substitution matrix corresponding to the inflation is given by

M =


0 0 2 3
0 0 1 2
1 0 2 5
0 1 0 3

 .

Clearly the matrix is primitive, as its third power has strictly positive entries only. Non-
periodicity of the tiling of space by any tiling from this family follows as usual, by what
is called the ‘ratio test’ in Senechal and Taylor (1990). A right eigenvector of the matrix
M corresponding to the leading eigenvalueτ 3 gives the limiting relative numbers of each
of the four types of tiles. Since these eigenvectors are proportional to(2 + τ, 1, τ 2, τ ), the
irrational ratios of some of these frequencies prove non-periodicity of the tiling.

The {a, A, v, V }-tilings are closely related to the{A, H, S, Z}-tilings of Mosseri and
Sadoc (1982). HereA is the same tetrahedron,H is an octahedron,S a pentagonal pyramid
andZ a heptahedron (cf figure 4).

The tile inflation proposed by Mosseri and Sadoc can be described by a substitution
θ2 : A2 → A∗

2, whereA2 = {A, H, S, Z}. This substitution is given by

θ2(A) = SA2, θ2(H) = ZSA2HSZ θ2(S) = A2HSZ θ2(Z) = AHSZ .

As for the{a, v, A, V }-tiling, there is symmetry breaking and packing is not unique, so
many tilings are possible. We claim that for any such tiling there is an{a, v, A, V }-tiling
such that the two tilings are mutually locally derivable (as defined in Baakeet al 1991). To
prove this, we do not have to study vertex or edge configurations because we will derive
the two tilings from each other by direct packing. Define the substitutionσ21 : A2 → A∗

1
by

σ21(A) = a2vA2 σ21(H) = ava2vA2V σ21(S) = A2V σ21(Z) = AV .

This substitution describes howτA, τH, τS and τZ can be packed by copies ofa, v, A

andV . To show that it is possible to pass from a specific Mosseri–Sadoc tiling (or rather
its inflation by a linear factorτ ) to an{a, v, A, V }-tiling, it suffices to check that

σ21 ◦ θ2 = θ1 ◦ σ21

because thenσ21 ◦ θn
2 = θn

1 ◦ σ21 for all n > 1, and hence arbitrarily large patches from
one tiling are transformed to the other byσ21 (or rather the more detailed extension ofσ21,
which takes into account mirror versions and orientations). In fact we have, for example,

σ21 ◦ θ2(Z) = σ21(AHSZ) = a2vA2ava2vA2V A2V AV

and

θ1 ◦ σ21(Z) = θ1(AV ) = a2vA2ava2vA2V A2V AV .

We leave it to the reader to check this relation for the other symbolsA, H andS. To go
the other way, we defineσ12 : A1 → A∗

2 by

σ12(a)=A σ12(v)=HSZ σ12(A)=SA2 σ12(V )=ZSA2HSZA2HSZAHSZ.
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Again, it is evident thatσ12 ◦ θ1 = θ2 ◦ σ12, which implies that the corresponding Mosseri–
Sadoc tiling can be locally derived from the{a, v, A, V }-tiling.

In this paper we hardly consider the question of inflation rules and matching rules. We
conjecture that these exist for the{a, v, A, V }-tilings associated with the Mosseri–Sadoc
tilings derived from the root latticeD6 by Kramer and Papadopolos (1994).
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